Pandas Project

November 21, 2021
[1]:

```
import pandas as pd
import numpy as np
school_data_to_load = "schools_complete.csv"
student_data_to_load = "students_complete.csv"
school_data = pd.read_csv(school_data_to_load)
student_data = pd.read_csv(student_data_to_load)
school_data_complete = pd.merge(student_data, school_data, how="left",\sqcup
    ๑on=["school_name", "school_name"])
```

[2](15):

```
schools = school_data_complete["school_name"].unique()
len(schools)
```

[3]: students = len(student_data["student_name"])
students
[3]: 39170
[4](24649428):

```
totalbudget = school_data["budget"].sum()
totalbudget
```

[5]:
mathave = student_data["math_score"].mean()
mathave
[5]: 78.98537145774827
[6](81.87784018381414):

```
readdave = student_data["reading_score"].mean()
readdave
```

[7](80.43160582078121):

```
overallave = (mathave + readdave)/2
overallave
```

[8]:

```
passmath = len(student_data[student_data["math_score"] >= 70])
percpassmath = (passmath/ students)*100
percpassmath
```

[8] :
74.9808526933878
[9]: passread = len(student_data[student_data["reading_score"] >=70])
percpassread $=($ passread/students) $* 100$
percpassread
[9]: 85.80546336482001
[10](%5Cbegin%7Btabular%7D%7Blrrrr%7D):

```
summary = [{'Total Schools': len(schools), 'Total Students': students, 'Total
    \hookrightarrowBudget': totalbudget, 'Avg. Math Score': mathave, 'Avg. Reading Score':\sqcup
    \hookrightarrowreaddave, '% Passing Math': percpassmath, '% Passing Reading': percpassread,\sqcup
    '% Overall Passing Rate': overallave}]
summary = pd.DataFrame(summary)
summary = summary[['Total Schools', 'Total Students', 'Total Budget', 'Avg.\sqcup
    Math Score', 'Avg. Reading Score', '% Passing Math', '% Passing Reading', '%\sqcup
    @verall Passing Rate']]
summary
```

\& Total Schools \& Total Students \& Total Budget Avg. Math Score

0 \& 15 \& 39170 \& 24649428 \& 78.985371
\end{tabular}

Avg. Reading Score \% Passing Math \% Passing Reading \}
$0 \quad 81.87784 \quad 74.980853 \quad 85.805463$
\% Overall Passing Rate
0
80.431606
[11]:
SchoolTypes = school_data.set_index(["school_name"]) ['type']
[12]:
studentsgroup = school_data_complete["school_name"].value_counts()
studentsgroup
[12]:

Bailey High School	4976
Johnson High School	4761
Hernandez High School	4635
Rodriguez High School	3999
Figueroa High School	2949
Huang High School	2917
Ford High School	2739

```
    Wilson High School 2283
    Cabrera High School }185
    Wright High School }180
    Shelton High School 1761
    Thomas High School }163
    Griffin High School 1468
    Pena High School 962
    Holden High School 427
    Name: school_name, dtype: int64
```

[13]: budgetgroup = school_data_complete.groupby(["school_name"]).mean() ["budget"]
budgetgroup
[13]: school_name
Bailey High School 3124928.0
Cabrera High School 1081356.0
Figueroa High School 1884411.0
Ford High School 1763916.0
Griffin High School 917500.0
Hernandez High School 3022020.0
Holden High School 248087.0
Huang High School 1910635.0
Johnson High School 3094650.0
Pena High School 585858.0
Rodriguez High School 2547363.0
Shelton High School 1056600.0
Thomas High School 1043130.0
Wilson High School 1319574.0
Wright High School 1049400.0
Name: budget, dtype: float64
[14]: perstubud = budgetgroup / studentsgroup
perstubud
[14]: Bailey High School
628.0

Cabrera High School 582.0
Figueroa High School 639.0
Ford High School 644.0
Griffin High School 625.0
Hernandez High School 652.0
Holden High School 581.0
Huang High School 655.0
Johnson High School 650.0
Pena High School 609.0
Rodriguez High School 637.0
Shelton High School 600.0
Thomas High School 638.0

```
Wilson High School
578.0
Wright High School
583.0
dtype: float64
[15]: avgmathgroup = school_data_complete.groupby(["school_name"]).
    ->mean()["math_score"]
avgmathgroup
```

Bailey High School 77.048432
Cabrera High School 83.061895
Figueroa High School 76.711767
Ford High School 77.102592
Griffin High School 83.351499
Hernandez High School 77.289752
Holden High School 83.803279
Huang High School 76.629414
Johnson High School 77.072464
Pena High School 83.839917
Rodriguez High School 76.842711
Shelton High School 83.359455
Thomas High School 83.418349
Wilson High School 83.274201
Wright High School 83.682222
Name: math_score, dtype: float64
[16]: avgreadgroup = school_data_complete.groupby(["school_name"]).
↔mean()["reading_score"]
avgreadgroup
[16]: school_name
Bailey High School 81.033963
Cabrera High School 83.975780
Figueroa High School 81.158020
Ford High School 80.746258
Griffin High School 83.816757
Hernandez High School 80.934412
Holden High School 83.814988
Huang High School 81.182722
Johnson High School 80.966394
Pena High School 84.044699
Rodriguez High School 80.744686
Shelton High School 83.725724
Thomas High School 83.848930
Wilson High School 83.989488
Wright High School 83.955000
Name: reading_score, dtype: float64
[17]:

```
mathpassgroup = school_data_complete[(school_data_complete["math_score"] >= 70)]
percmath = mathpassgroup.groupby(["school_name"]).count()["student_name"]/
    studentsgroup*100
percmath
```

[17]:

Bailey High School
Cabrera High School
Figueroa High School
Ford High School
Griffin High School
Hernandez High School
Holden High School
Huang High School
Johnson High School
Pena High School
Rodriguez High School
Shelton High School
Thomas High School
Wilson High School
Wright High School
dtype: float64
66.680064
94.133477
65.988471
68.309602
93.392371
66.752967
92.505855
65.683922
66.057551
94.594595
66.366592
93.867121
93.272171
93.867718
93.333333
[18]: readpassgroup = school_data_complete[(school_data_complete["reading_score"] >=ப $\rightarrow 70)$]
percread = readpassgroup.groupby(["school_name"]).count()["student_name"]/
\rightarrow studentsgroup*100
percread
[18]:

Bailey High School	81.933280
Cabrera High School	97.039828
Figueroa High School	80.739234
Ford High School	79.299014
Griffin High School	97.138965
Hernandez High School	80.862999
Holden High School	96.252927
Huang High School	81.316421
Johnson High School	81.222432
Pena High School	95.945946
Rodriguez High School	80.220055
Shelton High School	95.854628
Thomas High School	97.308869
Wilson High School	96.539641
Wright High School	96.611111
dtype: float64	

[19]:

```
overallpassgroup = ((percmath + percread)/2)
    overallpassgroup
```


	Per Student Budget	Average Math Score
Bailey High School	628.0	77.048432
Cabrera High School	582.0	83.061895
Figueroa High School	639.0	76.711767
Ford High School	644.0	77.102592
Griffin High School	625.0	83.351499
Hernandez High School	652.0	77.289752
Holden High School	581.0	83.803279
Huang High School	655.0	76.629414
Johnson High School	650.0	77.072464
Pena High School	609.0	83.839917
Rodriguez High School	637.0	76.842711
Shelton High School	600.0	83.359455
Thomas High School	638.0	83.418349
Wilson High School	578.0	83.274201
Wright High School	583.0	83.682222
Bailey High School	Average Reading Score	$\%$ Passing Math
Cabrera High School	81.033963	66.680064
Figueroa High School	83.975780	94.133477
Ford High School	81.158020	65.988471
Griffin High School	80.746258	68.309602
Hernandez High School	83.816757	93.392371
Holden High School	80.934412	66.752967
Huang High School	83.814988	92.505855
Johnson High School	81.182722	65.683922
Pena High School	80.966394	66.057551
Rodriguez High School	84.044699	94.594595
Shelton High School	80.744686	66.366592
Thomas High School	83.725724	93.867121
Wilson High School	83.848930	93.272171
Wright High School	83.989488	93.867718
	83.955000	93.333333

	\% Passing Reading	Overall Passing Rate
Bailey High School	81.933280	74.306672
Cabrera High School	97.039828	95.586652
Figueroa High School	80.739234	73.363852
Ford High School	79.299014	73.804308
Griffin High School	97.138965	95.265668
Hernandez High School	80.862999	73.807983
Holden High School	96.252927	94.379391
Huang High School	81.316421	73.500171
Johnson High School	81.222432	73.639992
Pena High School	95.945946	95.270270
Rodriguez High School	80.220055	73.293323

Rodriguez High School	637.0	76.842711
Figueroa High School	639.0	76.711767
Huang High School	655.0	76.629414
Johnson High School	650.0	77.072464
Ford High School	644.0	77.102592

| | Average Reading Score | \% Passing Math |
| :--- | ---: | ---: | ---: |
| Rodriguez High School | 80.744686 | 66.366592 |
| Figueroa High School | 81.158020 | 65.988471 |
| Huang High School | 81.182722 | 65.683922 |
| Johnson High School | 80.966394 | 66.057551 |
| Ford High School | 80.746258 | 68.309602 |
| | | |
| | \% Passing Reading | Overall Passing Rate |
| Rodriguez High School | 80.220055 | 73.293323 |
| Figueroa High School | 80.739234 | 73.363852 |
| Huang High School | 81.316421 | 73.500171 |
| Johnson High School | 81.222432 | 73.639992 |
| Ford High School | 79.299014 | 73.804308 |

[23]:

```
fresh2 = school_data_complete[school_data_complete["grade"] == "9th"].
    groupby("school_name").mean() ["math_score"]
soph2 = school_data_complete[school_data_complete["grade"] == "10th"].
    ->groupby("school_name").mean()["math_score"]
jun2 = school_data_complete[school_data_complete["grade"] == "11th"].
    \hookrightarrowgroupby("school_name").mean() ["math_score"]
sen2 = school_data_complete[school_data_complete["grade"] == "12th"].
    ->groupby("school_name").mean()["math_score"]
SummMath = pd.DataFrame({"9th Grade": fresh2, "10th Grade": soph2, "11th Grade":
    \hookrightarrow jun2, "12th Grade": sen2})
```

Summath
[23]:

	9th Grade	10th Grade	11th Grade	12th Grade
school_name				
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976

Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

[24]:

```
fresh = school_data_complete[school_data_complete["grade"] == "9th"].
    \hookrightarrowgroupby("school_name").mean() ["reading_score"]
soph = school_data_complete[school_data_complete["grade"] == "10th"].
    \hookrightarrowgroupby("school_name").mean()["reading_score"]
jun = school_data_complete[school_data_complete["grade"] == "11th"].
    \leftrightharpoonsgroupby("school_name").mean()["reading_score"]
sen = school_data_complete[school_data_complete["grade"] == "12th"].
    \hookrightarrowgroupby("school_name").mean()["reading_score"]
```

SummRead = pd.DataFrame(\{"9th Grade": fresh, "10th Grade": soph, "11th Grade":ப
\hookrightarrow jun, "12th Grade": sen\})
SummRead
[24]:

	9th Grade	10th Grade	11th Grade	12th Grade
school_name				
Bailey High School	81.303155	80.907183	80.945643	80.912451
Cabrera High School	83.676136	84.253219	83.788382	84.287958
Figueroa High School	81.198598	81.408912	80.640339	81.384863
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671
Thomas High School	83.728850	84.254157	83.585542	83.831361
Wilson High School	83.939778	84.021452	83.764608	84.317673
Wright High School	83.833333	83.812757	84.156322	84.073171

[25](%5Cbegin%7Btabular%7D%7Blrrrr%7D):

```
spending_bins = [0, 585, 615, 645, 675]
group_names = ["<$585", "$585-615", "$615-645", "$645-675"]
summary["Spending Ranges"] = pd.cut(perstubud, spending_bins,\sqcup
    \hookrightarrowlabels=group_names)
mathspend = summary.groupby(["Spending Ranges"]).mean()["Average Math Score"]
readspend = summary.groupby(["Spending Ranges"]).mean()["Average Reading Score"]
passmathspend = summary.groupby(["Spending Ranges"]).mean() ["% Passing Math"]
passreadspend = summary.groupby(["Spending Ranges"]).mean()["% Passing Reading"]
passoverallspend = (passmathspend + passreadspend)/2
spendsumm = summary[["Average Math Score","Average Reading Score","% Passing\sqcup
    \hookrightarrowMath","% Passing Reading", "Overall Passing Rate"]]
spendsumm = pd.DataFrame({"Average Math Score" :mathspend,
```

	"Average Reading Score" \quad :readspend,
	\% Passing Math" \quad :passmathspend,
"\% Passing Reading"	:passreadspend,
"Overall Passing Rate"	:passoverallspend\})
spendsumm.groupby("Spending Ranges").head(15)	

\& Average Math Score \& Average Reading Score $\%$ Passing Math

Spending Ranges \& \& \&

$<\$ 585$ \& 83.455399 \& 83.933814 \& 93.460096

$\$ 585-615$ \& 83.599686 \& 83.885211 \& 94.230858

$\$ 615-645$ \& 79.079225 \& 81.891436 \& 75.668212

$\$ 645-675$ \& 76.997210 \& 81.027843 \& 66.164813
\end{tabular}

\% Passing Reading Overall Passing Rate
Spending Ranges
<\$585
\$585-615
\$615-645
\$645-675
96.610877
95.035486
95.900287
86.106569
81.133951
95.065572
80.887391
73.649382
[26]:

```
size_bins = [0, 1000, 2000, 5000]
group_names2 = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"]
summary["Size Ranges"] = pd.cut(studentsgroup, size_bins, labels=group_names2)
sizemath = summary.groupby(["Size Ranges"]).mean()["Average Math Score"]
sizeread = summary.groupby(["Size Ranges"]).mean()["Average Reading Score"]
sizepassmath =summary.groupby(["Size Ranges"]).mean()["% Passing Math"]
sizepassread =summary.groupby(["Size Ranges"]).mean()["% Passing Reading"]
sizeoverallpass = (sizepassmath + sizepassread)/2
sizesumm = summary[["Average Math Score","Average Reading Score","% Passing\sqcup
    MMath","% Passing Reading", "Overall Passing Rate"]]
sizesumm = pd.DataFrame({"Average Math Score" :sizemath,
                            "Average Reading Score" :sizeread,
                            "% Passing Math" :sizepassmath,
                            "% Passing Reading" :sizepassread,
                            "Overall Passing Rate" :sizeoverallpass})
sizesumm.groupby("Size Ranges").head(15)
```

[26]:
Size Ranges
Small (<1000)
Medium (1000-2000)
Large (2000-5000)

Average Math Score Average Reading Score \% Passing Math \}

83.821598	83.929843	93.550225
83.374684	83.864438	93.599695
77.746417	81.344493	69.963361

\% Passing Reading Overall Passing Rate
Size Ranges
Small (<1000)
96.099437
94.824831

Medium (1000-2000)
96.790680
[27]:

```
typemath = summary.groupby(["Type"]).mean()["Average Math Score"]
typeread = summary.groupby(["Type"]).mean()["Average Reading Score"]
typepassmath =summary.groupby(["Type"]).mean()["% Passing Math"]
typepassread =summary.groupby(["Type"]).mean() ["% Passing Reading"]
typoverallpass = (typepassmath + typepassread)/2
typesumm = pd.DataFrame({"Average Math Score" :typemath,
    "Average Reading Score" :typeread,
    "% Passing Math" :typepassmath,
    "% Passing Reading" :typepassread,
    "Overall Passing Rate" :typoverallpass})
typesumm = typesumm[["Average Math Score", "Average Reading Score", "% Passing\sqcup
    @Math", "% Passing Reading", "Overall Passing Rate"]]
typesumm.groupby("Type").head()
```

[27]:
Average Math Score Average Reading Score \% Passing Math \}
Type

| Charter 83.473852 | 83.896421 | 93.620830 |
| :--- | :--- | :--- | :--- |

District
76.956733
80.966636
66.548453

	\% Passing Reading	Overall Passing Rate
Type		
Charter	96.586489	95.103660
District	80.799062	73.673757

1 PyCity Schools Analysis

- As a whole, schools with higher budgets, did not yield better test results. By contrast, schools with higher spending per student actually $(\backslash \$ 645-\backslash \$ 675)$ underperformed compared to schools with smaller budgets ($\backslash \$ 585$ per student).
- As a whole, smaller and medium sized schools dramatically out-performed large sized schools on passing math performances (89-91\% passing vs 67%).
- As a whole, charter schools out-performed the public district schools across all metrics. However, more analysis will be required to glean if the effect is due to school practices or the fact that charter schools tend to serve smaller student populations per school.

